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Abstract

Many critical data mining (DM) applications, like intrusion detection or stock market analysis, require a nearly
immediate result based on a continuous and infinite stream of data. Often we have to face the additional difficulty of
mining multiple and distributed streams, so that it becomes mandatory to mine them by exploiting the resources close
to data sources. In these cases, finding an exact solution is not compatible with the limited availability and capacity of
computing, storing, and communicating resources, as well as with real time constraints. However, an approximation
of the exact result is enough for most purposes. This report discusses a novel algorithm for approximate mining of
frequent itemsets from multiple streams of distributed transactions using a limited amount of memory. The proposed
algorithm is based on the computation of frequent itemsets in recent data and an effective method for inferring the
global support of previously infrequent itemsets. Both upper and lower bounds on the support of each pattern found
are returned along with the interpolated support. The resulting distributed framework for extracting patterns is suitable
for running on a Grid. Since the technologies based on the Service Oriented Architecture (SOA) are now very popular
for building the next generation Grid and Web, it is interesting to evaluate how these SOA technologies can be used
to build a seamless distributed Grid system able to perform knowledge extraction and data mining. SOA can, in fact,
supports the easy integration of algorithms, tools, and data sources, by also orchestrating specialized mining services
like the ours. For all these reasons, in this report we outline the main features of the SOA services that are useful to
build the Knowledge Grid, a novel framework for realizing distributed and composite knowledge discovery processes,
by integrating Grid resources and (distributed and stream) data mining tools, also by supporting data management,
and knowledge representation.

1 Introduction

This report discusses two novel results obtained in the field of distributed and stream data mining (DM).

The former is concerned withsireamalgorithm for approximate mining of frequent items&®,s;,-co.m (APProx-
imate Partition for Stream). We also propose an extension able to deal with this issue in more challenging cases. In
particular, we also show that the proposed merge/interpolation framework devised for the stream case can seamlessly
be extended to managkstributed streams several ways.

The latter result deals with a proposal of supporting a complete knowledge discovery process over emerging highly
distributed platforms like computational Grids, by using technologies based on Service Oriented Architecture (SOA).

This research work is carried out under the FP6 Network of Excellence CoreGRID funded by the European Commission (Contract IST-2002-
004265).



1.1 Frequent Patterns from Stream and Distributed Data

The stream and distributed data DM framework discussed in this report regards an important knowledge extraction
analysis, known as Association Rule Mining (ARM) [3, 19]. ARM deals with the extractions of association rules
from a database of transactioRs We are interested in the most computationally expensive phase of ARM, i.e., the
Frequent Itemset Mining~IM) one, during which the sef of all the itemsets that occurs in at least a user specified
number of transactions is discovered. Those itemsets are naniegaent ltemsets

The computational complexity of the FIM problem derives from the exponential size of its searciXffacee.
the power set of , whereZ is the set of items contained in the various transactiorf3.of way to pruneP(Z) is to
restrict the search to itemsets whose subsets are all frequenfPrriegi algorithm [3], and other derived algorithms
for non dynamic datasets, exactly exploits this pruning technique, based on the Apriori anti-monotonic principle.

In a stream setting, new transactions are continuously added to the dataset. The infinite nature of stream data
sources is a serious obstacle to the use of most of the traditional methods, since available computing resources are
limited, whereas the amount of previously happened events is usually overwhelming. Thus, one of the first effects
is the need to process data as they arrive, due to the impossibility of storing them. The results extracted evolve
continuously along with data. In our case, since we addphdmark window modethese results refer to the whole
data stream arrived so far, from a given past time (when we started collecting data) to the current time.

Obviously, an algorithm suitable for stream data should be able to compute the 'next step’ solution on-line, starting
from the previously known one and the current data, if necessary with some additional information stored along with
the past solution. In our case, this information is the count of a significant part of frequent single items, and a
transaction hash table used for improving deterministic bounds on supports returned by the algorithm.

Unfortunately, even the apparently simple discovery of frequent items in a stream is challenging [6]. Some items,
initially frequent, may eventually become infrequent. On the other hand, other items may appear initially in a sporadic
way and then become frequent. Thus the only way to exactly compute the support of these items is to maintain a
counter since the first appearance of each of them. This could be acceptable when the number of distinct items is
reasonably bounded. If the stream contains a large and potentially unbounded number of spurious items, as in case
of data with probabilities of occurrence that follow a Zipf’s law, like internet traffic data, this approach may lead to a
huge waste of memory.

In the first part of this report we discussteamalgorithm for approximate mining of frequent items&®,s;.-cam
(Approximate Partition for Stream). The infinite flow of data block in the stream is processed by considering past
processed data and recent data as two partitions of transactions. Upon new data arrival, as many transactions as
possible are buffered and processed in-core. The amount of buffered transactions obviously depends on their lengths,
but also on the size of main memory available. The past approximate solution is then merged with the frequent pattern
set obtained from recent data. Since past input transaction cannot be maintained, a second pass on the whole stream
is impossible. We thus use an approximate support inference heuristic during the merge phase in order to improve
the support accuracy. Both upper and lower bounds on the support of each pattern found are returned along with the
interpolated support.

Finally we propose an extension able to deal with this issue in more challenging cases, i.e. the mining of multiple
and distributed streams of data. The resulting distributed framework for extracting patterns is suitable for running on
a Grid.

1.2 Systems to support knowledge discovery processes

In order to support a complete knowledge discovery process over emerging highly distributed platforms like compu-
tational Grids, the main issue is the integration of two main requirements: synthesizing useful and usable knowledge
from data, and performing complex large-scale computations leveraging the Grid infrastructure. Such integration
must pass through a clear representation of the knowledge base used in order to translate moderately abstract domain-
specific queries into computations and data analysis operations able to answer such queries by operating on the under-
lying systems [7].

Whereas some high-performance parallel and distributed data mining systems have been proposed [27] - see
also [8] - there are few research projects attempting to implement and/or support knowledge discovery processes
over computational Grids.

Among them, th&knowledge Grid9] is a framework for implementing knowledge discovery tasks in a wide range
of high performance distributed applications. The Knowledge Grid offers to users high-level abstractions and a set of
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services by which is possible to integrate Grid resources to support all the phases of the knowledge discovery process,
as well as basic, related tasks like data management, data mining, and knowledge representation.

The main issues investigated and solved by the Knowledge Grid is the definition/standardization of metadata,
semantic presentation, and protocols for realizing discovery services and information management. Another important
topic is the exploitation of data access and integration components, since data to be used for our mining process can
be not only stored in distributed sites, but can also have different formats and associated metadata. Finally, knowledge
discovery procedures typically require to create and manage complex, dynamic, multi-step workflows. At each step,
data from various sources can be moved, filtered, integrated and fed into a data mining tool.

Since current research activity on the next generation Grid and Web is focusing on designing and implementing its
mechanisms following th&ervice Oriented ArchitectuSOA model, we have to choose a SOA-based technology
to develop such system. Current research activity on the Knowledge Grid, which is the main subject of the second
part of this report, is thus focused on designing and implementing its mechanisms followiSgrhee Oriented
Architecture(SOA model. In particular, the so-call&dpen Grid Services Architectu(@®©GSA paradigm and the
emergingWeb Services Resource Framew®KSRHF family of standards are being adopted for implementing the
Knowledge Grid services and mechanisms. These services will permit the design and orchestration of distributed data
mining applications running on large-scale, OGSA-based Grids.

1.3 Organization of the report

The first part of this report deals with our proposed algorithms and tools to extract pattern from stream and as follows.
Section 2.1 formally introduces the FIM problem on streams. Then Section 2.2 descri#d3gthe,.,, algorithm,

and thePartition algorithm that inspire@\P,,;c,, aNdAP ;... Before presenting and discussing our experimental
results in Section 2.4, we introduce, in Section 2.4.1, some similarity measures that we use in order to evaluate the
quality of the approximate results. Section 2.5 surveys the main related works in the field. Finally, in Section 2.6 we
discuss some interesting extensions of the proposed method.

In the second part of our report we discuss Grid and SOA platforms for building knowledge discovery and DDM
systems. Section 3.1 presents a background about the Knowledge Grid architecture. Then we outline the main features
of the Knowledge Grid services by using OGSA and WSRF, and discuss design aspects, execution mechanisms,
and performance evaluations. In particular, Section 3.2 discusses the SOA approach and its relationships with Grid
computing, while Section 3.3 presents a WSRF-based implementation of the Knowledge Grid services.

2 Approximate Mining of Frequent Patterns from Stream and Distributed
Data

In this first part of the report we discusstieamalgorithm for approximate mining of frequent itemsea®,s;.-cam
(Approximate Partition for Stream), which exploi€I [32], a state-of-the-art algorithm for FIM, as the miner engine
for recent data. ThAP g¢yeqrm, algorithm uses similar techniques that we have already exploitd& i, [39], an
algorithm for approximate distributed mining of frequent itemsets. Bd,cqm andAP 1y, USE @ COMputation
method inspired by thBartition algorithm [36].

Partition relies on a horizontally partitioned dataset, and consists in independently comipgtihgesults from
each partition, merging the local sets of frequent itemsets, and then recounting each potentially frequent pattern over
the whole dataset to discover thbal results. In order to extend this approach to a stream setting, blocks of data
received from the stream are used as an infinite set of partitions.

Others stream association mining algorithms, such@ssy COUNT[29] for frequent itemsets, use a similar
approach with some variation. Obviously, all of them avoid recounting potentially frequent itemsets over the whole
dataset, which is not feasible with streaming d#Bs;,...» applies the same heuristic used by the previously intro-
ducedAP .-, algorithm. The infinite flow of data block in the stream is processed pairwise, using past processed
data and recent data as two partitions. Upon new data arrival, as many transactions as possible are buffered and pro-
cessed in-core. The amount of buffered transactions obviously depends on their lengths, but also on the size of main
memory available. The past approximate solution is then merged with the frequent pattern set obtained from recent
data.

Since a second pass on the whole stream is impossible, we use an approximate support inference heuristic during
the merge phase in order to improve the support accuracy. Along with each interpolated support value, this method
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yields a pair of deterministic upper and lower bounds. The proposed inference heuristic can be easily replaced with
a different one, more complex or better fitting a particular application context. In particular, our method is based on
a simple, yet effective, interpolation schema based on the knowledge of the supports of the sub-patterns of a given
infrequent pattern. Despite its simplicity, it entails good approximation results in experimental evaluation. So we
expect that, for specific application contexts, a more focused inference method also based on domain knowledge
would yield even better results.

In data streams, the underlying data distribution may change. Hence the models built on old data might become
inaccurate. This problem, known as concept drift, complicates the task of interpolating the count of past occurrences
of a given pattern. The method we propose is in some way concept drift resilient, in particular when the drift concerns
only the single item probability distributions and not the joint distributions. In Section 2.6, we propose an extension
able to deal with this issue in more challenging cases.

2.1 The problem
In this section we formally define the FIM problem in both non-evolving databases and stream ones.

Definition 1. (TRANSACTION DATASET) LetZ = {iy, ..., i, } be a set of items. A non-evolving transaction dataset
D is a collection ofinput setsr transactions

D = {I| T = (tid, 1)},

wheretid is a transaction identifier, antd= {i1,...,i;} C Z is a set of distinct items. The siZeis the number of
transactions contained i®, i.e.,n = |D|.

The support of an itemset is a measure of its interestingness as a pattern, and is based on its frequency.

Definition 2. (SUPPORT OF AN ITEMSETJ Letp C 7 be an itemset. Theupporto(p) of itemset in datasetD is
defined as
o(p) = {(tid,t) € D | p C t}|

i.e., the number of transactionsnthat contain patterm. The relative suppoup(p)of patternp is instead expressed
as a fraction of transactions:

a(p)
sup(p) =
D]
Even if a transaction represents a set of items, with no particular order, it is convenient to assume that there exists
some kind of total ordeR among them. Such order makes unequivocal the way in which an itemset is written, e.g., if
we adopt an alphanumeric order we cannot Wi A} since the correct way i§A, B}.

Definition 3. (FREQUENTITEMSET MINING) Let minsupbe a user chosen threshold. An itemsét frequent inD
if its supporto (p) is not less thaw,,;,, = minsup - |D|, i.e., if sup(p) > minsup. A k-itemset is a pattern composed
of k items,F;. is the set of all frequent k-itemsets, afids the set of all frequent itemsets.

TheFrequent Itemset Mining (FIMproblem consists in discovering in D.

In a stream setting, since new transactions are continuously added to the dataset, we need a notation for indicating
that a particular dataset or result refers to a particular part of the stream. To this end, we write the interval as a subscript
after the entity.

Definition 4. (TRANSACTION STREAM DATASET) LetZ = {i4, ..., i} be aset of items. A transaction data stream
D is an infinite sequence afput setwor transactions

D = {f| T = (bid, tid, t)}

wheret = {i,...,ix} C Z is a set of distinct items, whitéd and bid are monotonically increasing identifiers, which
are respectively associated with single transactions and blocks. The block iddritifiechosen at reception time. In
particular, all the transactions labeled with the saimie=i arrived before all the transactions labeled wibid=i+1.
The transactions in thB" block, denoted a®;, are processed at the same time. The notafn;, i < j, identifies
the part of the stream containing only the transactions whmde are included in the intervat, j), i.e.,i < bid < j.
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ThusDy, j denotes the part of the stream from the starting block until bjodkthe j** block is the current one,
and the notation is not ambiguous, we will just wrlkenstead ofDy; ;).

Due do the continuous evolution of datasets, in a stream settings a solution to the FIM problem must be tied to a
part of the stream, indicated as a block intef®gl ;. Depending on the part of stream involved, the problem presents
different challenges, and is named differently. In particularldnemark mode]29, 26] considers the entire stream,
thesliding window modd10] refers to its most recent part, and, finally, thied-time window moddR?2], is obtained
by composing several distinct sliding windows, in order to maintain multiple time-granularities. In this report we
discuss an algorithm for the solution of the FIM in the landmark model. We formally introduce this problem in the
following.

Definition 5. (FREQUENTITEMSETMINING IN DATA STREAMS) Letminsupbe a user chosen threshold. An itemset
p is frequent inDy, 4 if its supportoy, ;(p) is not less thaw i, ,, = minsup - |Dpy 4|. A k-itemsetis a pattern
composed of items, 7, ., is the set of all frequent k-itemsets, afg ; is the set of all frequent itemsets.

The problem offFrequent Itemset Mining (FIM) in Data Strearosnsists in discovering; ; in Dy, 5, for in-
creasing values of

2.2 ThePartition algorithm and its extensions

The APgyrcam (Approximate Partition for Stream) algorithm used similar technique already used in our algorithm
AP 11erp [39] fOr approximate mining of frequent itemsets in a distributed setting. Both algorithms are inspired by
Partition [36], a sequential algorithm which divides the dataset into several partitions processed independently, and
then merges thkocal solutions to producthe global result. In this report we will also use the terms local and global,
as referred to stream input data or associated results. Local indicates something just concerning a contiguous part
of the stream, hereinafter called a block of transactions, whereas global indicates something pertaining to the whole
stream seen so far.

In this section we will describe tHeartition algorithm and its niaze distributed and streaming versions, which we
have used as a starting point for designing our approximate algorithms.

2.2.1 The originalPartition algorithm

The basic idea exploited biyartition is the following: if the dataset is divided into several partitions, then each
globally frequent itemset must Hecally frequent in at least one partition. This guarantees that the union of all local
solutions is a superset of the global soluti®artition sequentially reads the dataset, one partition at a time. For each
partition it extracts the locally frequent itemset, and adds them to a set of potential globally frequent itemsets. After
this phase, the result set contains every globally frequent itemset, mixed with several infrequefaisag®§itives

Thus the dataset is read again, counting the exact occurrences of each candidate pattern, i.e., the ones that turned out
to be frequent in only a proper subset of all the dataset partitions. At the end of the second scan all the infrequent
patterns are removed, so that the result set only contains the FIM problem solution.

2.2.2 TheDistributed Partition algorithm

Obviously,Partition can be straightforwardly implemented in a distributed setting with a master/slave paradigm [31].
Each slave becomes responsible of a local partition, while the master performs the sum-reduction of local counters
(first phase) and orchestrates the slaves for computing the missing local supports for potential globally frequent patterns
(second phase) to remove patterns having global support lessithanp (false positive patterns collected during the

first phase).

While theDistributed Partition algorithm gives the exact values for supports, it has pros and cons with respect to
other distributed algorithms. Thwosare related to the number of communications/synchronizations: other methods
like count-distribution [23, 43] require several communications/synchronizations, whilBigtiébuted Partition
algorithm only requires two communications from the slaves to the master, a single message from the master to the
slaves and synchronization after the first scan. démesare concerned with the size of the messages exchanged, and
the possible additional computation performed by the slaves when the first phase of the algorithm produces many false
positives. Consider that, when low absolute minimum supports are used, it is likely to produce a lot of false positives
due to data skew present in the various dataset partitions [35]. This has a large impact also on the cost of the second
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phase of the algorithm: most of the slaves will participate in counting the local supports of these false positives, thus
wasting a lot of time.

A naive technique to work around this problem is to siigtributed Partition after the first-pass. We call the
algorithm that adopts this simple technidgbistributed One-pass Partition. So, inDistributed One-pass Partition
each slave independently computes locally frequent patterns and sends them to the master which sum-reduces the
support for each pattern, and writes in the result set only the patterns having the sum of the known supports not less
thanminsup - |D|. Distributed One-pass Partition has obvious performance advantages @istributed Partition.
On the other hand, it yields a result which may be approximate, since it is possible that some globally frequent pattern
occurs in a partition where it resulted to be locally infrequent, so that its local support count is unknown. In several
cases this may cause the erroneous omission of globally frequent patterns. H@istvited One-pass Partition
ensures that at least the number of occurrences reported for each returned pattern exists.

2.2.3 TheStreaming Partition algorithm

The infinite sequence of blocks of data that arrive from the data stream can be considered as an infinite set of partitions.
This allows us to adopt thBistributed Partition approach also in a stream setting. Since the stream is infinite, how-
ever, it is impossible to collect and merge the results obtained from the various blocks. Thus the partial results must be
merged repeatedly, and each time the result set needs to be updated. A block of data is processed as soon as "enough”
transactions are available, and the local result set of the current block is merged with the previous approximate result
set, which refers to the past part of the stream. Unfortunately, due to memory constraints, in the stream case only
recent raw data — i.e., the last block of transactions — can be maintained available for processing. Thus, in this case we
can perform a second scan of them to check the support count of frequent patterns that resulted to be frequent in the
past, but that are locally infrequent in the current block.

Only the partial results extracted so far from previous blocks of the stream, plus some other additional information,
can be available for determining the global result set, i.e. the frequent itemsets and their supports. Therefore, in the
stream case it is impossible to perform a second scan on the past data to check the support count of a pattern that is
locally frequent in the current blocR;, but that resulted infrequent in the past streBm ;). A naive technique to
work-around this problem is to keep in the global result set only those patterns having the sum of the known supports
not less thanminsup - |Dpy ;1|. We call the algorithm that adopts this simple techniGaeeaming Partition. The
known support counts are only the ones corresponding to those blocks in which the patterns resulted to be locally
frequent. The first time an itemsets reported, its support count corresponds to the support computed in the current
block. In case it appeared previously, this means introducing an er@®y.isfthe first block where: is frequent, then
this error can be at mo@be[l’i)(ammb —-1).

2.3 TheAP algorithm family

The two néve algorithms discussed above for distributed and stream settings, both inspPaditipn, have serious
shortcomings. In particular, the weaknes$Stieaming Partition is common to several other stream FIM algorithms.
When a previously ignored pattern becomes interesting, its exact support is largely underestimated. In order to over-
come this issue, we propose a general framework that corrects the known supports of itemsets that result frequent in
the current block of transactions, by using an interpolation schema based on other knowledge gathered from past data.
The kind of interpolation used can be substituted seamlessly, in order to better fit the particular application context.
In this article and in our previous works [39] we have used a really simple, yet effective, interpolation based on the
reduction factor with respect to the supports of the subsets of the considered pattern.

The AP gircam algorithm is derived from the distributed algorith®P 1,,.c., [39], using a method similar to the
one used to buil&treaming Partition from Distributed Partition.

In the following subsection we will quickly descril#e;,,:..,,, than we will introduce thé\P g;,¢q., algorithm.

2.3.1 TheAPp¢erp algorithm

One of the most evident issueshistributed Partition is the generation of several false positives, which in turn cause
an increment of both resource utilization and execution time, especially when data skew between data partitions is
high. TheAP,..., algorithm addresses this issue by means of global pruning based on good approximate knowledge
of the globalF;: each locally frequent-pattern which contains a globally non-frequent 2-pattern will be locally
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removed from the set of frequents patterns before sending it to the master, and generating the hedndidate
patterns.

On the other hand)istributed One-pass Partition uses a very conservative estimate for the support of patterns,
since it always chooses the lower bounds (known support counts) to approximate the results. This causes underesti-
mated support values, but also several false negatives, often for those patterns whose global supports are close to the
threshold. The data skew, indeed, might cause a globally fredupatternz to result infrequent on a given partition
D; only. In other words, since;(z) < minsup - |D;|, z will not be returned as a frequent pattern by tHeslave.

As a consequence, the masteiDagtributed One-pass Partition cannot count on the knowledge @f(«), and thus
cannot exactly compute the global support:ofJnfortunately, inDistributed One-pass Partition, the master might
also deduce that is not globally frequent, because ; ; , o(z) < minsup - |D|. In order to limit this issue, in
AP .:erp the master infers an approximate value for this unknew() by exploiting aninterpolation methodThe
master bases its interpolation reasoning on the knowledge of:

e the exact support afingle itemsn each partition;

o thereduction factor(z) with respect to the known supports of the items and subsets contained in the considered
patternz.

Note that the support of some subset:oh a partition could be unknown too. This mean that it has been interpolated
and discarded because globally infrequent duringithel iteration, otherwise an approximation of its support would
be known. In this case can be discarded as well.

The master can thus deduce tivkknowrsupporto; () on the basis of (x), in turn derived from the supports of
in those partitiond; wherez resulted to be frequent. Figure 1 shows an overview of the data flows in the distributed
AP [4erp @lgorithm.

- —_ - - — —

| Master
fffffff — -—— = - = = —

g < e
I | Local Local
| | data e data DCI |
L - - _-—— sy T T L e ‘
‘Save & V. Q. Slave |
P -
I Local Local
| | data DClY | | | data DClj |
Lo | Lo |

Figure 1:APpterp, OVErView.

When the number of distributed dataset partitions is really high, the computation cost for collecting and merging
the local solutions could become considerable, since the complexity of the merge operation is linear in the amount
of input data. To limit this issue, the nodes can be organized in a hierarchy, where each node fetches and merges the
results of its direct descendant, and returns the result of the merge to the parent node.

2.3.2 TheAPgy,cqm algorithm

The streaming algorithm we propose in this repAiRs;..c..., tries to overcome some of the problems encountered
by Streaming Partition and other similar algorithms for association mining on streams, when the data skew between

CoreGRID TR-0046 7



[ opp(@) | oi(z) | Action \
Known Known | opy (2) = op)(x) 4 o4(x).

Known | Unknown | Recount suppom;(x) on recent, still available, data.
Theno[l,i] (ﬁ) = J[l,i)(x) + Jz(m)

Unknown | Known | Interpolate pastsuppomff?p(x).
interp

Thena[u](x) = ol (z) + oi(x).

Table 1:APs¢cam: Computing the support of in the whole data strea®|; ;).

different incoming blocks is high.

This skew might cause a globally frequent itemséd result infrequent on a given data bloBk. In other words,
sinceo;(r) < minsup - |D;|, z will not be found as a frequent itemset in tHé block. As a consequence, we will
not be able to count on the knowledgengfz), and thus exactly compute the supportofUnfortunatelyStreaming
Partition might also deduce thatis not globally frequent, becaus€; ; ,; o;(z) < minsup - |D|.

APgsy-cam addresses this issue in different ways, as summarized in Table 1. In particular, the table shows all the
possible cases regarding the knowledge @f) on the current bloclD; and the previous part of the stredp, ;).

The first case is the simplest to handle: the new supppyi(z) will be the sum obr; ;)(x) ando;(z). The second
one is similar, except that we need to look at recent data for compating. The key difference wittStreaming
Partition is the handling of the last cas&Psy,cam, iNStead of supposing thatnever appeared in the past, tries to
interpolateoy; ;) (). The interpolation is based on the knowledge of:

e the exact support of eadgtemin Dy, ;) (or, optionally, just the approximate support of a fixed number of the
most frequent items);

e thereduction factors:(z) of the support count of subsetsaoin the current block with respect to its interpolated
support over the past part of the stream.

The algorithm will thus infer theinknownsupportoy; ;) (z) of itemsetr on the part of the stream preceding the
i*" block as follows:

T (1) = 0y() - ()

where

r(z) = Minitemen <min ( 1)
The rationale of Equation (1) is that, given two itemsetndz’, 2’ C , if the exact value of; ;) (z) is unknown,

interp

its interpolated value[1 0 (z) is approximated by using the following proportion:

o, (item)  op g (2 N item)
oi(item)  o;(z \ item)

oi(z) : oi(2') = cr[ifijrp(x) Do ()
so that
Ly (@) = oi(z oi(z')

Note that alsar; ;)(2’) might be an approximate value previously interpolated.

Given ak-itemsetx, the reduction factor(z) defined by Equation (1) is thus computed by considering:all
' C z, such thatt’ is either one of the single items belongimgor ak — 1-itemset set-included im. Finally, the
value chosen for(x) is the minimum one.

Note that, since the merge of the results is performed level-wise starting first from shorter itemsets, when we
try to approximatefffijrp (z), the exact or approximate value @f; ;) (x ~ item) must surely be known or already
interpolated, for alitem € x. This is because all the—1-itemsets included im must be globally frequent. Otherwise,

2 could not be a valid candidate.

Figure 2 shows an overview of the data flows in &Rs;,.cq., algorithm.
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INPUT block , block., block; block.,, block.,,
DCI DCI DCI DCI DCI ]
A A
APin(erp J APinlerp J AP
es

OUTPUT res,, res,, res, res,, res,,

; AP AP
interp interp interp

Figure 2:APs;ycam OVErview.

T oi(x) O1,i) (z) USTL(;)
{A,B,C} 6 ?
{AB} 8 50 6.2
{AC} 12 30 2.5
{B,C} 10 100 10
{A} 17 160 9.4
{B} 14 140 10
{C} 18 160 8.9
{} 40 400 -

Table 2: Sample supports and reduction ratios.

Example of interpolation. Suppose that we have received 440 transactions so far, and that 40 of these are in the
current blockD;. The itemset: = { A, B, C'}, briefly indicated asi BC, is locally frequent, whereas it was infrequent
in previous data. Table 2 reports the support of every subset involved in the computation. The first columns contains
the itemsets, the second and third columns contain the known supports of the patterns in the currént &atln
the past part of the streaf, ;). Finally, the last column shows the reduction factor implied by each pattern.

According to Equation (1), the algorithm chooses the reduction fa€torfor « = { A, B, C'} by considering all

the itemsets’, 2’ C z, of size one and two. In this case the chosen minimum r”g;" I(T)) is 2.5, corresponding
to the subset’ = {A,C}. Since inD; the support ofc = {4, B,C} is 0;(x) = 6, the interpolated support will be
o (@) = 6-2.5 = 15,

It is worth remarking that this method works if the support of larger itemsets decreases similarly in most parts of
the stream, so that a reduction factor (different for each itemset) can be used to interpolate unknown values. Finally

note that, as regards the interpolated value above, we expect that the following inequality shouﬁ{ﬁ?ﬂﬂ(m) <

minsup - |Dpy 3 ]. So, if we obtain it is not satisfied, this interpolated result should not be accepted. If it was true, the
exact valuery; ;) () should have already been found. Hence, in those few cases where the above inequality does not

interp

hold, the interpolated value will be:;";’ (x) = (minsup - |Dp 5]) — 1.

Implementation. We can finally introduce the pseudo-codeAd s, cqam- AS in Streaming Partition the transac-
tions are received and buffereCl, the algorithm used for the local computations, exactly knows the amount of
transactions that can be processed in-core.

Thus we can use this knowledge in order to maximize the size of each block of transactions processed at a time.
Since frequent itemsets are processed sequentially and can be offloaded to disk, we can ignore the memory occupied
by the mined results.

Figure 3 contains the pseudo-codeARs;,...... For the sake of simplicity we will neglect the quite obvious
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main loop with code related to buffering, and concentrate our attention on the processing of each data block. The
interpolation formula has been omitted too for the same reason.

processBlock  (buf fer, globFreq)
locFreq[l] = <frequent items>
k=2;
while size(locFreqlk — 1]) >= k do
locFreq[k] = computeFrequent(k,locFreq, globFreq);
commitInsert(k,locFreq, globFreq);
end while
end;

commitinsert  (k, locFreq, globFreq)
for all pat in globFreq|k] and not in locFreq[k] do
<count support of pat in recent data>

if <pat is frequent> then
<pre-insert pat in globFreq[k]>
end if
end for

<update globFreg>
end;

computeFrequent  (k, locFreq, globFreq)
< compute local frequent itemsets >
for all pat locally frequent do
<compute global interpolated support and bounds>
if <pat is frequent> then
<insert pat in locFreq[k]>
<pre-insert pat in globFreq[k]>
end if
end for
return Fy;
end;

Figure 3:APsycam pSeudo-code.

Each block is processed, visiting the search space level-wise, for discovering frequent itemsets. In this way itemsets
are sorted according to their length and the interpolated support for frequent subpatterns is always available when
required. The processing of itemsets of lengtis performed in two steps. First frequent itemsets are computed in
the current block, and then the actual insertion into the past set of frequent itemsets is carried out. When a pattern is
found to be frequent in the current block, its support on past data is immediately checked: if it was already known then
the local support is summed to previous support and previous bounds. Otherwise a support and a pair of bounds are
inferred for past data, and summed to the support in the current block. In both cases, if the resulting support passes the
support test, the pattern is queued for insertion. After every locally frequent itemset of lkehgthbeen processed,
the support of every previously known itemset which, on the other hand, resulted to be locally infrequent must be
computed on recent data. Itemsets passing the support test are queued for insertion too. Then the pre-inserted itemsets
in the queue are sorted and the actual insertion takes place.

2.3.3 Tighter bounds

As a consequence of using an interpolation method to guess an approximate support value in the past part of the
stream, it is very important to establish some bounds on the support found for each pattern. In the previous subsection
we have already indicated a pair of really loose bounds: each support cannot be negative, and if a pattern was found
infrequent in the past datRy, ;, then its interpolated support should be less thamsup - |Dj; ;|. This criteria

is completely true for a non-evolving distributed dataskst(ibuted frequent pattern minifig In the stream case,
however, the results are approximate and may be affected by false negatives. When a pattern is erroneously discarded
as infrequent, its future upper bounds might be underestimated. Anyhow, this issue concerns just a limited number of
patterns and, also in these cases, the bounds represent a useful approximation of the exact ones.

Bounds based on pattern subset. The first bounds that interpolated supports should obey, derive frogheri

property. no set can have a support greater than those of any of its subset. Since recent results are merged level-wise
with previously known ones, the interpolation can exploit already interpolated subset support. When a subpattern is
missing during interpolation, it means that it has been examined during a previous level and discarded. In this case all
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of its superset may be discarded as well. The computed bound is thus affected by the approximation of past results:
an itemset with an erroneous support will affect the bounds for each of its superset. To avoid this issue it is possible to
compute the upper bound for an itemsatsing the upper bounds of its sub-patterns instead of their support. In this
way the upper bounds will be weaker, but there will be less false negatives due to erroneous bounds enforcement.

Bounds based on transaction hash. In order to address the issue of error propagation in support bounds we need
to devise some other kind of bounds, which are computed exclusively from received data, and thus are independent of
any previous results. Such bounds can be obtained using inverted transaction hashes. The technique discussed below
was first introduced in the algorithm IHP [25], an association mining algorithm, where it is used for finding an upper
bound for the support of candidates in order to prune infrequent ones. As we will show, this method can also be used
for lower bounds.

The key idea is to use a numbAr of arrays of item counters where each array is associated with a disjoint set of
input transactions. When a transactios= (bid, tid, ) is processed, we only modify the counters in tié array,
whereh is the result of a hash function applied#t@l. Sincetids are consecutive integer numbers, a trivial hash
function, likeh f(tid) = tid mod H, will guarantee an equal distribution of transactions among all hash bins. Thus,
when the transactioh= (bid, tid, t) is processed, we update the array associated with the cuident

(Vitem € t) Countplitem] + +

whereh = tid mod H.

Let H =1, i.e., a single array of counters is used. Let A and B be two itemsCangit,[A] andCounty[B] the
associated counters, i.€ounty[A] and Count[B] are the number of occurrences of itesdsand B in the whole
dataset. According to the Apriori principle

o({A, B}) < min(County[A], County[B])

Furthermore we are able to indicate a lower bound for the same support.beethe total number of transactions
We know from the inclusion/exclusion principle that

o({A, B}) = max(0, Counto[A] + Counto[B] — n)

In fact, if n — Count[A] transactions does not contain the iteimthen at leas€ounty[B] — (n — County[A]) of the
County|B] transactions containing will also containA. Suppose that = 30, County[A] = 18, County[B] = 18.
If we represent with aiX each transaction supporting a pattern, and with a dot any other transaction, we obtain the
following diagrams:
Best case(ub(AB)= 18) Worst case(Ib(AB)=6)

A: XXXXXXXXXX XXXXXXXX.. e XXXXXXXXXX XXXXXXXX..

.......... B: XXXXXXXXXX XXXXXXXX. e

LXXXXXXXX XXXXXXXXXX AB: XXXXXXXXXX XXXXXXXX.. e

............ XXXXXX.. oo SUPP 18 6
Then no more tham8 transactions will contain botd and B. At the same time at lea$8 + 18 — 30 = 6 transactions
will satisfy that constraint. Since each counter represents a set of transaction, this operation is equivalent to the
computation of the minimal and maximal intersections of the tid-lists associated with the single items.

Usually, howeverH > 1. In this case, for each transactioi, we will increment the counter arrayounty|],

whereh = tid mod H. The bounds for the support of an itemsedre:

H—1
o (z)"PPer = Z min (County,[item])

itemex

H—1
o(x)lower = Z max (0,nh - Z (nn — C’ounth[item])>
h=0

item€Ex

wheren,, is the total number of transactions associated witHiffichash value.

Consider the same example discussed above3(.gansactions including itemg and B, whereos(A4) = 18 and
o(B) = 18. Let H = 3. Thereforen;, = 10, for eachh = 0, 1,2. Suppose that'ounty[A] = 8, County[B] = 7,
Counti[A] = 4, Count,[B] = 5, Counts[A] = 6, andCounts[B] = 6. Using the same notation previously
introduced we obtain:
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h=0 h=1 h=2
Best case Worst case Best case Worst case Best case Worst case

Al XXXXXXXX.. XXXXXXXX..  Ar XXXX...... XXXX...... A:

XXXXXX.... XXXXXX.... B: XXXXXXX... LXXXXXXX B

XXXXXover e XXXXX  B: XXXXXX.... Ll XXXXXX AB: XXXXXXX...

L XXXXX. AB: XXXXeen e AB: XXXXXX....

XX, supp 7 5 supp 4 0 supp 6

2
Each pair of columns, which corresponds to a distinet 0, 1, 2, represents the transactions havingdmapped into
the corresponding location by the hash function. Note that the lower and upper bountis4doB}) are, respectively,
54+0+2="T7and7+ 4+ 6 = 17. Note that these two bounds are stricter tRaand18, i.e., the ones obtained for
H=1.

Both lower bounds and upper bounds computations can be extended recursively to larger itemsets. This is possible
since the reasoning previously explained still holds if we considers the occurrences of itemsets instead of those of
single items.

The lower bound computed in this way will be often equal to zero in sparse datasets. Conversely, on dense datasets

this method did prove to be effective in narrowing the two bounds.

2.4 Experimental evaluation

In this section we study the behavior of the proposed method. We ruARRe....., algorithm on several datasets

using different parameters. The goal of these tests is to understand how similarities of the results vary as the stream
length increases, how the hash based pruning is effective, and, in general, how dataset peculiarities and invocation
parameters affect the accuracy of the results. Furthermore, we want to study how execution time evolves when the
stream length increases.

2.4.1 Assessing accuracy.

The method we are proposing yields approximate results. In partidBay, ..., computes itemset supports which
may be slightly different from the exact ones. Thus the result set may miss some frequent itemset (false negatives), or
include some infrequent itemset (false positives).

Similarity measure. In order to evaluate the accuracy of the results, we need a measure of similarity between two
pattern sets. A widely used one has been introduced in [35], and is based on support difference.

Definition 6 (Similarity). Let A and B respectively be the reference (correct) result set and the approximate result
set. supa(z) € [0,1] andsupp(y) € [0, 1], wherez € A andy € B, correspond to the relative support found in A
and B respectively. Note that sinéecorresponds to the frequent itemsets found by the approximate algorithm under
observationA — B thus corresponds to the set faflse negativeswhile B — A are thefalse positives

The Similarity is thus computed as

2 xenrp™ax{0; 1 — a x |sup,(x) — sups(x)|}

Sim, (A,B) = AUH

wherea > 1 is a scaling parameter, which increase the effect of the support dissimilarity. Mort—:ioimﬂ,icates the
maximum allowable error on (relative) itemset supports. We will use the notéiior) to indicate the default case
fora,ie.a=1.

This measure of similarity is thus the sum of at most B| values in the rangf, 1], divided by|A U B|. Since
|AN B| <|AU Bj, similarity lies in[0, 1] too.

When an itemset appears in both sets and the difference between the two supports is greét,eittﬂms not
improve similarity, otherwise similarity is increased according to the scaled differenee= 120, then the maximum
allowable error in the relative supportig20 = 0.05 = 5%. Supposing that the support difference for a particular
itemset is4%, the numerator of the similarity measure will be increased by a small quantity:(20 = 0.04) =
0.2. Whena is 1 (default value), only itemsets whose support difference is at most 100% contribute to increase
similarity. On the other hand, when we geto a very high value, only itemsets with a very similar supports in both
the approximate and reference sets will contribute to increase the similarity measure.
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It is worth noting that the presence of several false positives and negatives in the approximate result set B con-
tributes to reduce our similarity measure, since this entails an increalsefih(the denominator of th8im,, formula)
with respect tad N B. Moreover, if an itemset has an actual support which is slightly lessrihanup but the ap-
proximate supportsupp) is slightly greater thaminsup, similarity is decreased even if the computed support was
almost correct.

Two more classical result approximation measures are Precision and Recall, both originally introduced in the
information retrieval context. The Precision is defined as the fraction of patterns contained in the solution that are
actually frequent, i.e., it is the probability that a generic returned pattern will be actually frequent. The Recall is
defined as the fraction of the total number of frequent pattern that are contained in the solution, i.e., it is the probability
that a generic frequent pattern will be found by the algorithm. Both, however, does not consider the correctness of the
support, but only the presence in the result set. This may be misleading, in particular when using a high minimum
support threshold. On the other hand, a high similarity value ensure high Precision, high Recall, and limited differences
between the actual support values and the discovered ones.

Average support range. When bounds on the support of each itemset are available, an intrinsic measure of the cor-
rectness of the approximation is the average width of the interval between the upper bound and the lower bound [39].

Definition 7 (Average support range). Let B be the approximate result setyp(x) the exact support for itemset
and sup(z)°wer and sup(x)“PPe" the lower and upper bounds emp(z), respectively. The average support range is
thus defined as:

1
ASR(B) = Bl Z sup(x) PP — sup(x)'ower
reB

Note that, while this definition can be used for every approximate algorithm, how to compu(te)’*" and
sup(x)PPe" is algorithm specific.

2.4.2 Experimental data.

We performed several tests using both real world datasets, mainly from the FIMI'03 contest [1], and synthetic datasets
generated using the IBM generator. We randomly shuffled each dataset and used the resulting datasets as input streams.
Table 3 illustrates these datasets along with their cardinality. The datasets having the name starting with T are

synthetic datasets, which mimic the behavior of market basket transactions. The sparse dataset family T2018N5k
has transactions composed, on average, of 20 items, chosen from 5000 distinct items, and includes maximal itemsets
whose average length is 8. The dataset family T30I30N1k was generated with the parameters briefly indicated in
its name. It is a moderately dense dataset, since more than 10,000 frequent itemsets can be extracted even with a
minimum support 080%. A description of all other datasets can be found in [1]. Kosarak and Retail are really sparse
datasets, whereas all other the real world datasets used in experimental evaluation are dense. Table 3 also indicates,
for each dataset, a short acronym that will be used in our charts for referring to it.

Dataset Reference #Trans.
accidents A 340183
kosarak K 990002
retail R 88162
pumbs P 49046
pumbs-star PS 49046
connect C 67557
T2018N5k S2..6 77302..3189338
T25120N5k S7..11 89611..1433580
T30I130N1k D1..D9 50000..3189338

Table 3: Datasets used in experimental evaluation.
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Figure 4: Similarity as a function of available memory.

2.4.3 Experimental Results.

For each dataset and several minimum support thresholds, we computed the exact reference solutions by using
DCI [32], the same FIM algorithm used as a building block for b&RY ;e aNAAP s1reqrm. Then we rarAP sircam
for different values of available memory and number of hash entries.

The first test is focused on catching the effect of used memory on the behavior of the algorithm, when the block
of transactions processed at a time is sized dynamically according to the available resources. In this case data are
buffered as long as all the item counters, and the representation of the transactions included in the current block fit the
available memory. Note that the size of all frequent itemsets, mined either locally or globally, is not considered in our
resource evaluation, since they can be offloaded to disk if needed. The second test is somehow related to the previous
one. In this case the amount of required memory is varied, since we determine a-priori the number of transactions to
include in a single block, independently of the stream content. The typical use casRdJgr.,,, matches the first
test: the user chooses the support, while the other parameters are chosen adaptively, depending on the available system
memory and data peculiarities. The second test, with this adaptive behavior disabled, has been inserted for the sake
of completeness. Since the datasets used in the tests are quite different, in both cases we used really different ranges
of parameters. Therefore, in order to fit all the datasets in the same plot, the number reported in the horizontal axis
are relative quantities, corresponding to the block sizes actually used in each test. These relative quantities used in the
chart are obtained by dividing the memaory/block size used in the specific test by the smallest one for that dataset. For
example, the series 50KB, 100KB, 400KB thus becomes 1, 2, 8.

The plot in Figure 4 shows the results obtained in the fixed memory case, while the plot in Figure 5 corresponds
to the case when the number of transactions per block is fixed. The relative quantities reported in both plots refer to
different base values of either memory or transactions per blocks. These values are reported in the legend of each
plot. In general when we increase the number of transactions processed at a time, either statically or dynamically on
the basis of the memory available, we also improve the results similarity. Nevertheless the variation is in most cases
small, and sometimes there is also a slightly negative trend, caused by the data dependant relationship between used
memory and transactions per block. Indeed, a different amount of available memory entails a different division of the
stream into blocks, having different sizes and starting points. Occasionally, this could worsen the similarity, in spite
of a larger amount of available memory, as in the case of dataset PS in the plot in Figure 4. In our test we noted that
choosing an excessively low amount of available memory for some datasets leads to performance degradation, and
sometimes also to similarity degradation. The plot in Figure 6 shows the effectiveness of the hash-based bounds on
reducing the Average Support Range (zero corresponds to an exact result). As expected, the improvement is evident
only on more dense datasets.

The last batch of tests makes use of a family of synthetic datasets, with homogeneous distribution parameters and
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Figure 5: Similarity as a function of the number of transactions per block.

varying lengths. Each datasets is obtained from the larger dataset of the series by truncating it to simulate streams with
different lengths. For each truncated dataset we computed the exact result set, used as reference value in computing the
similarity of the corresponding approximate result obtained\By;,...,. The chart in Figure 7 plots both similarity

and ASR as the stream length increases. We can see that similarity remains almost the same, whereas the ASR
decreases when an increasing portion of the stream is processed. Finally, the plot in Figure 8 shows the evolution of
execution time as the stream length increases. The execution time increases linearly with the length of the stream.
Hence, the average time per transaction is constant if we fix the dataset and the execution parameters.

2.5 Related works

The Association Rule Mining (ARM) in transactional databases has been introduced in [3] and is one of the most pop-
ular topics in the KDD field [19, 21]. The Frequent Itemset Mining (FIM) is the most computationally expensive phase

of ARM. Most FIM algorithms are based on tid>riori [5] algorithm, which restricts the search to itemsets whose
subsets are all frequemPriori is a level-wise algorithm, since it examine theatterns only when all the frequent
patterns of lengttk — 1 have been discovered. Several other algorithms based on the Apriori principle have been pro-
posed. Some use the same level-wise approach, but introduce efficient optimizations, like a hybrid count/intersection
support computation [32], or the reduction of the number of candidates using a hash based technique [34]. Others
use a depth-first approach, either class based [43] or projection based [2, 24]. Others again use completely different
approaches, based on multiple independent computations on smaller part of the dataset, like [36], or incremental com-
putation on an adaptive sample of the data [35, 40, 18, 37]. Parallel (PDM) and distributed (DDM) data-mining are
a natural evolution of data-mining technologies, motivated by the need of scalable and high performance systems. A
number of parallel algorithms for solving the FIM have been proposed in the last years [4, 23]. Most of them can be
considered parallelizations of the well-known Apriori algorithm.

Zaki authored a good survey on ARM algorithms and relative parallelization schemas [42]. Agrawal et al. [4]
proposed a broad taxonomy of the parallelization strategies that can be adopted for Apriori on distributed-memory ar-
chitectures. The described approaches constitute a wide spectrum of tradeoffs between computation, communication,
memory usage, synchronization, and the use of problem-specific information. The Count Distribution (CD) approach
adopts the data-parallel paradigm, according to which the input transaction database is statically partitioned among
the processing nodes, while the candidate’4eis replicated. Count Distribution is an algorithm that can be realized
in a distributed setting, since it based on a partitioned dataset, and also because the amount of information exchanged
between nodes is limited. The other two methods proposed by Agrawal et al., Data and Candidate Distribution, re-
quire moving the dataset. Unfortunately in a distributed environment such dataset is usually already partitioned and
distributed on distinct sites, and cannot be moved for several reasons, for example due to the low latency/bandwidth
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Figure 6: ASR as a function of the number of hash entries.

network that connects the sites.

Several DDM FIM algorithms have been proposed, aimed at reducing the amount of communications involved in
the Count Distribution method. FDM [13] constitutes an attempt to reduce the amount of communication entailed in
the sum-reduction of the local counters in the CD parallelization of the Apriori algorithm. Schuster and Wolff [38]
then introduced DDM, whose aim is to reduce the number of messages exchanged by FDM , since the number of
messages exchanged by FDM in presence of non-homogeneity of database partitions quickly becomes similar to the
ones exchanged by CD. The basic idea of DDM is to verify that an itemset is frequent before collecting its support
from every party. The same authors extend the idea of DDM to a dynamic large scale P2P environment [41], i.e., a
system based on utilizing free computational/storage resources on non-dedicated machines, where nodes can suddenly
depart/join along with the associated database, thus modifying the global result of the computation.

The exact discovery of frequent items in a stream of items may be a highly memory intensive problem [12]. Several
relaxed versions of this problem exist, and some interesting ones were introduced in [12, 17, 28]. The techniques used
for solving this family of problems can be classified into two large categories: count-based techniques [30, 17, 28, 29],
sketch-based techniques [29, 12, 14, 15]. The first ones monitor a limited set of potentially "interesting” items, using
a counter for each one of them. In this case an error arises when an item is erroneously kept out of the set or inserted
too late. The second family provides frequency estimation for every item by using a hash indexed vector of counters.
In this case the risk of completely missing the occurrences of an item is avoided, at the cost of looser guarantees on
the computed frequencies.

The FIM problem on stream of transactions poses additional memory and computational issues due to the expo-
nential growth of solution size with respect to the corresponding problem on streams of items. Two representative
approximate algorithms are derived respectively fronssy COUNT[29] andFREQUENT[17, 28]. The first one is
presented in [29], and is an almost straightforward extensiameky COUNT. The second one is presented in [26],
and, even if based oPREQUENT, is significantly different from it, since a property that ensures the correctness in
the item case is no longer valid for itemsets. Both algorithms are affected by the issues previously described in the
discussion otreaming Partition, i.e., they do not consider the possible support count that a pattern could have, even
if it has been reported as infrequentossy COUNT maintains the obvious upper bound that we also used, but no
lower bound is exploited.

2.6 Extensions

The proposed interpolation framework for frequent pattern mining is based on the merge of partial results, using
interpolation to replace missing data. The framework was originally proposed for distributed datasets [39], and, in
this report, has been extended to stream datasets. Thanks to the generality of the proposed approach, it can be eas-
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Figure 7: Similarity and Average Support Range as a function of different stream lengths.

ily extended also to other, more challenging, cases, like Frequent Sequences, Frequent Closed Itemsets, and settings
involving multiple distributed streams. Interestingly, the proposed stream algorithm can be applied, with little modi-
fications, also to a mobile agent setting. In particular it corresponds to the simple case of a single agent that traverses
multiple repositories in sequence, carrying partial results along with the code. Thus we plan to investigate the use
of this framework in more intricate scenarios, involving largely distributed datasets and several cooperating mobile
agents.

In this section we only discuss some of the extensions indicated above, namely the distributed/stream FSM (Fre-
guent Sequence Mining) problem and the FIM problem for multiple distributed streams.

2.6.1 Frequent Sequence Mining on distributed/stream data

The methods presented for frequent itemset extraction can easily be extended to another kind of frequent patterns:
the frequent sequences. This only involves minor modifications of the algorithms: replacing the interpolation formula
with one suitable for sequences, and the FIM algorithm with a FSM algori@@8M [33] is an efficient level-wise

FSM algorithm, able to handle time constraints, and producing an ordered set of frequent seq@&®kkis a

suitable FSM candidate to be inserted in our distributed and stream framework. Indee@G8idevisits level-wise

the search space, it extracts the sequences ordered by length. This featurd\&llgws,, andAP ., 10 merge
on-the-fly the sequence patterns as they arrive. Furthermore the on-the-fly merge reduces both memory requirement
and computational cost.

As the overall framework remains exactly the same, all the improvements and limits that we have explained for
frequent itemsets are still valid. The only problems are those originated by the intrinsic difference between frequent
itemset and frequent sequences, which make the result of FSM potentially larger and more likely to be affected by
combinatorial explosion.

2.6.2 Frequent Itemset Mining on distributed stream data

The proposed merge/interpolation framework can be extended seamlessly to manage distributed streams in several
ways. The most straightforward one is based on the compositié#® f;.,,, followed by AP g¢,cqn,. Each slave is
responsible for extracting frequent itemsets from its local streams. The results of each processed block are sent to the
master and merged, first among them by ug\®g,.,, and then with the past combined results by U\, cqm -

The schema on the left of Figure 9 illustrates this framew®s,, 4. ; is the FIM result on the™ block of thenode

stream, whereaRes; is the result of the merge of all locdl* results, andHist_Res; is the historical global result,

i.e., from the beginning to th&" block.
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Figure 8: Execution time as a function of different stream lengths.

A firstimprovement on this base idea could be the replacement of the two cascaded merge phases, one distribution
related and the other stream related, with a single one. This would allow for better accuracy of results and stricter
bounds, thanks to the reduction of cumulated errors. Clearly, the recount step, Useg,in,,, for assessing the
support of recently infrequent itemsets that were frequent in past data, is impossible in both cases. Since the merge is
performed in the master node, only the received locally frequent patterns are available. However, this step proved to
be effective in our preliminary tests &P gs;,..., particularly for dense datasets.

In order to introduce the local recount phase, it is necessary to move the stream merge phase to the slave nodes. In
this way, recent data are still available in the reception buffer, and can be used to improve the results. Each slave node
then sends its local results, related to the whole history of its streams, to the master node that simply merges them
like in APr.crp. Since these results are sent each time a block is processed, it would be advisable to send only the
differences in the results related to the last processed block. This involves rethinking the central merge phase, but in
our opinion it should yield better results. The schema on the right of Figure 9 illustrates this framework. The stream of
result generated by each instancé>dl is directly processed &P s¢rcqm, Yielding Hist_Respoqe i, i-€. the results
on the wholenode stream at time. AP .., collects these results and outputs the final reHult_Res;.

The last aspect to consider is synchronization. Each stream evolves, potentially at a different rate with respect to
other streams. This means that when the stream reception buffer of a node is full other nodes could be still collecting
data. Thus, the collect and merge framework should allow for asynchronous and incremental result merge, with some
kind of forced periodical synchronization, if needed. In this case, lik&kRq,..,,, We are considering a straightfor-
ward way of collecting and merging the local results. However, when the number of distributed streams is really high,
a better solution is possible. The nodes can be organized in a hierarchy, where the master exchanges messages only
with the first level, and intermediate nodes encapsulate their child nodes, returning the result of the merge to the parent
node.

2.6.3 Time granularity

The method proposed in this report yields the most recent solution to the frequent pattern problem in a landmark
setting, that is, the returned frequent patterns are referred to the whole stream. While this can be satisfactory in
several cases, sometimes the user may be interested in limiting the query time interval or in comparing the solution for
different time intervals to discover changes. Our algorithm can be straightforwardly adapted to these time constrained
gueries, since the merge of local results can be postponed, to enforce the user supplied time constraints. This technique
is described in full details in [22]. Here we summarize its main aspects and explain how to integrate our algorithm in

a tilted-time window framework.
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Figure 9: Distributed stream mining framework. On the left distributed merge followed by stream merge, on the right
local stream merge followed by distributed merge.

Tilted-time windows. The users are often interested in analyzing recent data at a finer granularity than past data.
The design of tilted-time windows allows for storing in a memory-efficient way the summaries needed to answer
gueries on long term data, and fine granularity on more recent data.

1h 24h 31days 1

2months 1 year 1 year 2 years 4 years

Figure 10: Natural tilted-time windows

Figure 10 shows a tilted-time window based on commonly used time intervals: last 4 quarter of an hour, last 24
hours, last 31 days, last 12 months, last years, last 2 years, last 4 years. If we keep track of the support of a pattern
for each time interval, we can use such information in order to answer the user query. It should be noted that only 78
counters are used to represent the past 4 year with high granularity on recent data, and a few more counters would
allow extending the larger time window to over 100 years. If the available memory is a critical factor, logarithmic
tilted-time windows can be used. In this case the size of every window is larger than the more recent one by a fixed
factor. Figure 11 shows a logarithmic tilted-time window corresponding to a factor 2. If the timeisistill a quarter
of an hour, the first two intervals on the left represent the last two quarters, the following one the last half-hour and so
on. In this case the same 4 years period would require [dnl (4 x 24 x 365)| + 1 ~ 19, which is far less than the
number of quarters contained in the same period.

|t|t|2t| 4t | 8t | 16t |
I | | |

Figure 11: Logarithmic tilted-time windows
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When a time unit elapses, the most recent counter is shifted and replaced by the new support, the previous one is
shifted too and so on, summing the supports when needed (e.g., 24 hours make a day). Tilted-time windows can be
efficiently updated, if we use some extra memory to store the counters that will replace the current ones while they are
incremented. Indeed, the amortized time is O(1) for each pattern and, in the logarithmic case, only one extra counter
is needed for each counter to be maintained.

APgsyrcam and tilted-time windows. Simply merging the set of frequent itemsets for different time intervals, as
highlighted in theStreaming Partition case, leads to an approximation of the support. This is due to the possible
occurrence of patterns in intervals where they are not frequent. To address this issue the authors of [22] are forced to
maintain also several infrequent patterns, in a number increasing with the required maximum error on the support
Since the approach they propose is roughly comparable to a reduction of the minimum support during local computa-
tion, the time needed to process each batch can be unreasonable for dense datasets. Even moderately sparse datasets
with long transactions may be critical, due to the reduction of the minimum support to

Thus, we propose to avoid the support reduction and to use the interpolation based merge propBsed s,
instead of simply summing the supports when the counters are shifted. In this case the user will not be able to specify
a maximal error bound. HoweveXP s;,...» Will determine the error bounds on computed patterns, and it will also be
able to deal with lower support level, and more complex datasets than the algorithm proposed in [22] .

Dealing with concept drift. In case the models built on old data become inaccurate, due to a data distribution
change, using tilted-time windows can help to avoid the effects of concept drift. Since the patterns frequencies are
maintained at different time granularities, we can simply decide to ignore the summaries of older data when they are
no longer representatives, that is, when the knowledge they provide is not compatible with current data. However this
approach requires being able to decide which part of past data is useful and which is not, and sometimes this is not
easily decidable.

A simpler approach consists in gradually decreasing the importance of past data [22], using a fading, factor
applied each time a counter is shifted or merged. Obviously also the window sizes, which corresponds to the supports
of the empty pattern, are "faded”, so the definition of frequent pattern is still consistent. The main drawback of this
approach is that it is not reversible. Hence, it is impossible to apply a different fading factor to past data. However, if
we apply the fading factor to the already summarized windows instead of at batch level, we can avoid this issue.

3 Grid and SOA platforms for building DDM systems

Whereas some high-performance parallel and distributed data mining systems have been proposed [27] - see also [8] -
there are few research projects attempting to implement and/or support knowledge discovery processes over computa-
tional Grids. In the second part of this report, we first recall the background and main concepts aBmavttexige

Grid architecture [9], one of the first Grid-based architectures that supports distributed knowledge extraction processes.
In particular, we outline the main features of the Knowledge Grid services, and discuss their design aspects, execution
mechanisms, and performance evaluations. In addition, we will show how the Knowledge Grid can be designed and
implemented in terms of OGSAOpen Grid Services Architectyrand WSRF {WS-Resource FramewqrkWhile

OGSA is an implementation of the SOA model within the Grid context, where OGSA provides a well-defined set of
basic interfaces for the development of inter-operable Grid systems and applications [20], WSRF has been recently
proposed as an evolution of early OGSA implementations [16].

3.1 The Knowledge Grid

The Knowledge Grid [9] is an environment providing knowledge discovery services for a wide range of high perfor-
mance distributed applications. Data sets and data mining and analysis tools used in such applications are increasingly
becoming available as stand-alone packages and as remote services on the Internet. Examples include gene and DNA
databases, network access and intrusion data, drug features and effects data repositories, astronomy data files, and data
about web usage, content, and structure.

The Knowledge Grid architecture uses basic Grid mechanisms to build specific knowledge discovery services.
These services can be implemented in different ways using the available Grid environments such as Globus, UNI-
CORE, and Legion. This layered approach benefits from “standard” Grid services that are more and more utilized
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and offers an open distributed knowledge discovery architecture that can be configured on top of Grid middleware in

a simple way.

High-level K-Grid layer
DAS TAAS EPMS RPS
Data Tools and Execution Result
- Access Algorithms Plan Presentation
= Service Access Management Service
(U] Service Service
[
o)
T
2
S Core K-Grid layer
2
X KDS RAEMS — 3
— Knowledge Resource m
m Directory Allocation and
Service Execution -
Management w
Service
[ Basic Grid services ]

Figure 12: The Knowledge Grid architecture.

Figure 12 shows the general architecture of the Knowledge Grid system and its main components.
The High-level K-Grid layerincludes services used to compose, validate, and execute a distributed knowledge
discovery computation. The main services of the High-level K-Grid are:

e TheData Access ServigpAS is responsible for the publication and search of data to be mined (data sources),
and the search of discovered models (mining results).

e The Tools and Algorithms Access Servid®AS is responsible for the publication and search of extraction
tools, data mining tools, and visualization tools.

e The Execution Plan Management Servi(fePMS. An execution plan is represented by a graph describing
interactions and data flows between data sources, extraction tools, data mining tools, and visualization tools.
The Execution Plan Management Service allows for defining the structure of an application by building the
corresponding execution graph and adding a set of constraints about resources. The execution plan generated by
this service is referred to abstract execution plarbecause it may include both well identified resources and
abstract resourced.e., resources that are defined through constraints about their features, but are not known a
priori by the user.

e TheResults Presentation Servi(lRPS offers facilities for presenting and visualizing the extracted knowledge
models (e.g., association rules, clustering models, classifications).

The Core K-Grid layeroffers basic services for the management of metadata describing the available resources
features of hosts, data sources, data mining tools, and visualization tools. This layer coordinates the application
execution by attempting to fulfill the application requirements with respect to available Grid resources. The Core
K-Grid layer comprises two main services:

e TheKnowledge Directory ServicfKDS) is responsible for handling metadata describing Knowledge Grid re-
sources. Such resources include hosts, data repositories, tools and algorithms used to extract, analyze, and
manipulate data, distributed knowledge discovery execution plans, and knowledge models obtained as result
of the mining process. The metadata information is represented by XML documents stor&hdnvkedge
Metadata RepositorfKMR).

e The Resource Allocation and Execution Management SeRéeEMS is used to find a suitable mapping be-
tween an abstract execution plan and available resources, with the goal of satisfying the constraints (CPU,
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storage, memory, database, network bandwidth) imposed by the execution plan. The output of this process is an
instantiated execution plamhich defines the resource requests for each data mining process. Generated execu-
tion plans are stored in thénowledge Execution Plan RepositdEPR). After the execution plan activation,

this service manages the application execution and the storing of results kntivdedge Base Repository

(KBR).

3.2 SOA and the Grid

TheService Oriented Architectuf&OA is essentially a programming model for building flexible, modular, and inter-
operable software applications. Concepts behind SOA are not new, they are derived from component based software,
the object oriented programming, and some other models. Rather new is, on the contrary, the broad application and
acceptance in modern scientific and business oriented networked systems. The increasing complexity in software de-
velopment, due to its strong relationship with business and scientific dynamicity and growth, requires high flexibility,
the possibility to reuse and integrate existing software, and a high degree of modularity. The solution proposed by
SOA can enable the assembly of applications through parts regardless of their implementation details, deployment
location, and initial objective of their development. Another principle of service oriented architectures is, in fact the
reuse of software within different applications and processes.

A serviceis a software building block capable of fulfilling a given task or business function. It does so by adhering
to a well defined interface, defining required parameters and the nature of the result (a contract between the client of
the service and the service itself). A service, along with its interface, must be defined in the most general way, in the
view of its possible utilization in different contexts an for different purposes. Once defined and deployed, services
operates independently of the state of any other service defined within the system, that is they are like “black boxes.”
External components are not aware of how they perform their function, they care merely that they return the expected
result. Nonetheless, services independence does not prohibit to have services cooperating each other to achieve a
common goal. The final objective of SOA is just that, to provide for an application architecture within which all
functions are defined as independent services with well-defined interfaces, which can be called in defined sequences
to form business processes [11].

When designing services it is important to take into proper account the questicemodarity, i.e., it is important
to understand what is the amount of functionality that a service should provide. In general, a coarse-grained service
has more chances to be used by a wide number of applications and in different contexts, while a fine-grained service
is targeted to a specific function and is usually more easy to implement. In summary, the service-oriented architecture
is both an architecture and a programming model, it allows the design of software that provides services to other
applications through published and discoverable interfaces, and where the services can be invoked over a network.

When speaking about SOA thoughts go immediately to Web services, but there is a substantial difference between
them. Web services are essentially a web-based implementation of SOA, thus they provide for a particular communi-
cation framework within which services can be deployed and operated. Actually, Web services are the most popular
implementation of SOA, the reasons of this being, basically, that they are based on universally accepted technologies
like XML and SOAP.

The Web is not the only area that has been attracted by the SOA paradigm. Also the Grid, can provide a framework
whereby a great number of services can be dynamically located, relocated, balanced, and managed so that needed
applications are always guaranteed to be securely executed, regardless of the load placed on the system and according
to the principles of on-demand computing. The trend of the latest years proved that not only the Grid is a fruitful
environment for developing SOA-based applications, but also that the challenges and requirement posed by the Grid
environment can contribute to further developments and improvements of the SOA model.

The Grid community has adopted t@pen Grid Services Architectu(©@GSA as an implementation of the SOA
model within the Grid context. In OGSA every resource is represented as a Web Service that conforms to a set of
conventions and supports standard interfaces. OGSA provides a well-defined set of Web Service interfaces for the
development of interoperable Grid systems and applications [20]. RecentilySheesource Framewo/SRF has
been adopted as an evolution of early OGSA implementations [16]. WSRF defines a family of technical specifications
for accessing and managistateful resourceasing Web Services. The composition of a Web Service and a stateful
resource is termed &¥S-Resource

The possibility to define a “state” associated to a service is the most important difference between WSRF-compliant
Web Services, and pre-WSRF ones. This is a key feature in designing Grid applications, since WS-Resources provide
a way to represent, advertise, and access properties related to both computational resources and applications. Besides,
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the WS-Natificatiorspecification defines jpublish-subscrib@otification model for Web Services, which is exploited

to notify interested clients and/or services about changes that occur to the status of a WS-Resource. The combination
of stateful resources and the notification pattern can be exploited to build distributed, long-lived Grid applications in
which the status of the computation is managed across multiple nodes, and services cooperate in a highly-decentralized
way.

3.3 Knowledge Grid WSRF services

This section describes the design and implementation of the Knowledge Grid in terms of the OGSA and WSRF models.
In this implementation, each Knowledge Grid servikeGrid servicg is exposed as a Web Service that exports one
or more operationgqP9, by using the WSRF conventions and mechanisms.

The operations exported by High-level K-Grid services (DAS, TAAS, EPMS, and RPS) are designed to be invoked
by user-level applications, whereas operations provided by Core K-Grid services (KDS and RAEMS) are thought to
be invoked by High-level and Core K-Grid services.

—> Local interaction

------ » Possibly remote interaction s DAS

nl:’ TAAS
client [
% ‘// interface [==~---.__

Figure 13: Interactions between a user and the Knowledge Grid environment.

As shown in Figure 13, a user can access the Knowledge Grid functionalities by udliegtainterfacethat is
located on her/his machine. The client interface can be an integrated visual environment that allows the user to perform
basic tasks (e.g., search of data and software, data transfers, simple job executions), as well as distributed data mining
applications described by arbitrarily complex execution plans.

The client interface performs its tasks by invoking the appropriate operations provided by the different High-level
K-Grid services. Those services are in general executed on a different host; therefore the interactions between the
client interface and High-level K-Grid services are possibly remote, as shown in the figure.

Figure 14 describes the general invocation mechanisms between clients and K-Grid services. All K-Grid services
export three mandatory operationsreateResource |, subscribe anddestroy - and one or more service-
specific operations. ThereateResource  operation is used to createVES-Resourgewhich is then used to
maintain the state (e.g., results) of the computations performed by the service-specific operaticuhsttibe
operation is used to subscribe for notifications about computation resultsdeéBtr@y  operation removes a WS-
Resource.

The figure shows a generic K-Grid service exporting the mandatory operations and two service-specific operations
operationX andoperationY . A client interacting with the K-Grid service is also shown. Note that a “client”
can be either a client interface or another K-Grid service.

Here we assume that the client need to invoke, in sequence, the opeog@yationX andoperationY . In
order to do that, the following steps are executed (see Figure 14).

1. The client invokes thereateResource  operation, which creates a new stateful resource, used to maintain
the state of the subsequent operations. The state is expredRexpasgieswithin the resource.
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Figure 14: General K-Grid service invocation mechanism.

2. The K-Grid service returns thEndpointReferencef the created resource. The EndpointReference is unique
within the Web Service, and distinguishes this resource from all other resources in that service. Subsequent
requests from the client will be directed to the resource identified by that EndpointReference.

3. The client invokes theubscribe  operation, which subscribes for notifications about subsequent properties
changes. Hereafter, the client will receive notifications containing all the new information (e.g., execution
results) that will be stored as resource properties.

4. The client invokesoperationX  in an asynchronous way. Therefore, the client may proceed its execution
without waiting for the completion of the operation. The execution is handled within the WS-Resource created
on Step 1, and all the outcomes of the execution are stored as properties.

5. Changes to the WS-Resource Properties are notified directly to the client. This mechanism allows for the
asynchronous delivery of the execution results whenever they are generated.

6. The client invokeperationY . As before, the execution is handled within the resource created on Step 1,
and results are stored in its properties.

7. The execution results are delivered to the client again through a notification mechanism.
8. The client invokes thelestroy operation, which destroys the resource created on Step 1.

Table 4 shows the services and the main associated operations of the Knowledge Grid.

4 Conclusions

In the first part of this report we have discuse®s;,......, @ new algorithm for approximate frequent itemset mining

on streamsAP sy €Xploits a novel interpolation method to infer the unknown past counts of some itemsets, which

are frequents only on recent data. Since the support values computed by the algorithm are approximate, we have also
proposed a method for establishing a pair of upper and lower bounds for each interpolated value. These bounds are
computed using the knowledge of subpattern frequencies in past data, and of a hash based compressed representation
of past data. Experimental tests shows that the solution producA® by..... is a good approximation of the exact

global result. The interpolation works particularly well for dense dataset, achieving a similarity close to 100% in the
best case. The adaptive behavioA®fs;,c.., allows us to limit the amount of used memory.

The proposed interpolation framework for frequent pattern mining is based on the merge of partial results, using
interpolation to replace missing data. The framework was originally proposed for distributed datasets [39], and, in
this report, has been extended to stream datasets. Thanks to the generality of the proposed approach, it can be easily
extended also to other, more challenging, cases, like Frequent Sequences, Frequent Closed Itemsets, and settings
involving multiple distributed streams.
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Table 4: Description of main K-Grid service operations.

Service Operation Description

This operation is invoked by a client for publishing a newly available dataset. The pub-

ublishData L ) ) . ) .
DAS P lishing requires a set of information that will be stored as metadata in the local KMR.

The search for available data to be used in a KDD computation is accomplished during
DAS searchData the application design by invoking this operation. The searching is performed on the basis
of appropriate parameters.

This operation is used to publish metadata about a data mining tool in the local KMR.

TAAS publishTools As a result of the publishing, a new DM service is made available for utilization in KDD
computations.

TAAS searchTools Itis similar to the searchData operation except that it is targeted to data mining tools.

) o This operation receives a conceptual model of the application to be executed. The EPMS

EPMS submitKApplication generates a corresponding abstract execution plan and submits it to the RAEMS for its
execution.

RPS getResults Retrieves results of a performed KDD computation and presents them to the user.

. This is the basic, core-level operation for publishing data or tools. It is thus invoked by
ublishResource . . - o )
KDS P the DAS or TAAS services for performing their own specific operations.
KDS searchResource The core-level operation for searching data or tools.

This operation receives an abstract execution plan of the application. The RAEMS gen-

RAEMS manageKExecution A A . - ;
erates an instantiated execution plan and manages its execution.

In the second part of this report we have addressed the problem of defining and composing Grid services for

implementing distributed knowledge discovery and data mining services on SOA-Grids. We have discussed some
Grid-based data mining systems, described the Knowledge Grid system, and presented Grid services for searching Grid
resources, composing software and data elements, and manage the execution of the resulting data mining application
on a Grid.

In particular, we have described the definition of data mining Grid services in the context of the Knowledge Grid

architecture. Services and their associated operation presented allow for data and tools publication and searching,
submission application models for execution, management of the mapping of an application on Grid resources/services
for execution and retrieving the results produced by a data mining application.
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